Hashtable、ConcurrentHashMap源码分析


Hashtable、ConcurrentHashMap源码分析
  为什么把这两个数据结构对比分析呢,相信大家都明白。首先二者都是线程安全的,但是二者保证线程安全的方式却是不同的。废话不多说了,从源码的角度分析一下两者的异同,首先给出二者的继承关系图。

 Hashtable类属性和方法源码分析
  我们还是先给出一张Hashtable类的属性和方法图,其中Entry<K,V>是Hashtable类的静态内部类,该类继承自Map.Entry<K,V>接口。如下将会详细讲解Hashtable类中属性和方法的含义。

属性

Entry<?,?>[] table :Entry类型的数组,用于存储Hashtable中的键值对;
int count :存储hashtable中有多少个键值对
int threshold :当count值大于该值是,哈希表扩大容量,进行rehash()
float loadFactor :threshold=哈希表的初始大小*loadFactor,初始容量默认为11,loadFactor值默认为0.75
int modCount :实现"fail-fast"机制,在并发集合中对Hashtable进行迭代操作时,若其他线程对Hashtable进行结构性的修改,迭代器会通过比较expectedModCount和modCount是否一致,如果不一致则抛出ConcurrentModificationException异常。如下通过一个抛出ConcurrentModificationException异常的例子说明。

public static void main(String[] args) {

     Hashtable<Integer, String> tb = new Hashtable<Integer,String>();
     tb.put(1, "BUPT");
     tb.put(2, "PKU");
     tb.put(3, "THU");
     Iterator<Entry<Integer, String>> iter = tb.entrySet().iterator();
     while(iter.hasNext()){
         Entry<?, ?> entry = (Entry<?, ?>) iter.next(); //此处会抛出异常
         System.out.println(entry.getValue());
         if("THU".equals(entry.getValue())){
             tb.remove(entry.getKey());
         }
     }
}

/* 输出结果如下:
THU
Exception in thread "main" java.util.ConcurrentModificationException

at java.util.Hashtable$Enumerator.next(Hashtable.java:1367)
at ali.Main.main(Main.java:16) */

ConcurrentModificationException异常
Hashtable的remove(Object key)方法见如下方法5,每一次修改hashtable中的数据都更新modCount的值。Hashtable内部类Enumerator的相关部分代码如下:

private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
    Entry<?,?>[] table = Hashtable.this.table;
    int index = table.length;
    Entry<?,?> entry;
    Entry<?,?> lastReturned;
    int type;

    /**
     * Indicates whether this Enumerator is serving as an Iterator
     * or an Enumeration.  (true -> Iterator).
     */
    boolean iterator;

    /**
     * 遍历之初将hashtable修改的次数赋值给expectedModCount
     */
    protected int expectedModCount = modCount;

    Enumerator(int type, boolean iterator) {
        this.type = type;
        this.iterator = iterator;
    }
    //
    public boolean hasMoreElements() {
        Entry<?,?> e = entry;
        int i = index;
        Entry<?,?>[] t = table;
        /* Use locals for faster loop iteration */
        while (e == null && i > 0) {
            e = t[--i];
        }
        entry = e;
        index = i;
        return e != null;
    }

    @SuppressWarnings("unchecked")
    public T nextElement() {
        Entry<?,?> et = entry;
        int i = index;
        Entry<?,?>[] t = table;
        /* Use locals for faster loop iteration */
        while (et == null && i > 0) {
            et = t[--i];
        }
        entry = et;
        index = i;
        if (et != null) {
            Entry<?,?> e = lastReturned = entry;
            entry = e.next;
            return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
        }
        throw new NoSuchElementException("Hashtable Enumerator");
    }

    //查看是否还有下一个元素
    public boolean hasNext() {
        return hasMoreElements();
    }

    public T next() {
        //首先判断modCount和expectedModCount是否相等
        //由于在主程序中Hashtable对象通过tb.remove()方法修改了modCount的值,使得expectedModCount和modCount不相等而抛出异常
        //解决办法就是将tb.remove()方法替换为iter.remove()方法
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        return nextElement();
    }
    //该方法在remove元素的同时修改了modCount和expectedModCount的值
    public void remove() {
        if (!iterator)
            throw new UnsupportedOperationException();
        if (lastReturned == null)
            throw new IllegalStateException("Hashtable Enumerator");
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();

        synchronized(Hashtable.this) {
            Entry<?,?>[] tab = Hashtable.this.table;
            int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;

            @SuppressWarnings("unchecked")
            Entry<K,V> e = (Entry<K,V>)tab[index];
            for(Entry<K,V> prev = null; e != null; prev = e, e = e.next) {
                if (e == lastReturned) {
                    modCount++;
                    expectedModCount++;
                    if (prev == null)
                        tab[index] = e.next;
                    else
                        prev.next = e.next;
                    count--;
                    lastReturned = null;
                    return;
                }
            }
            throw new ConcurrentModificationException();
        }
    }
}

Enumerator类

方法

contains(Object value),该方法是判断该hashtable中是否含有值为value的键值对,执行该方法需要加锁(synchronized)。hashtable中不允许存储空的value,所以当查找value为空时,直接抛出空指针异常。接下来是两个for循环遍历table。由如上的Entry实体类中的属性可以看出,next属性是指向与该实体拥有相同hashcode的下一个实体。
containsKey(Object key),该方法是判断该hashtable中是否含有键为key的键值对,执行该方法也需要对整张table加锁(synchronized)。首先根据当前给出的key值计算hashcode,并有hashcode值计算该key所在table数组中的下标,依次遍历该下标中的每一个Entry对象e。由于不同的hashcode映射到数组中下标的位置可能相同,因此首先判断e的hashcode值和所查询key的hashcode值是否相同,如果相同在判断key是否相等。

get(Object key),获取当前键key所对应的value值,本方法和containsKey(Object key)方法除了返回值其它都相同,如果能找到该key对应的value,则返回value的值,如果不能则返回null。

 put(K key, V value),将该键值对加入table中。首先插入的value不能为空。其次如果当前插入的key值已经在table中存在,则用新的value替换掉原来的value值,并将原来的value值作为该方法的返回值返回。如果当前插入的key不在table中,则将该键值对插入。
插入的方法首先判断当前table中的值是否大于阈值(threshold),如果大于该阈值,首先对该表扩容,再将新的键值对插入table[index]的链表的第一个Entry的位置上。

remove(Object key),将键为key的Entry从table表中移除。同样该方法也需要锁定整个table表。如果该table中存在该键,则返回删除的key的value值,如果当前table中不存在该key,则该方法的返回值为null。

replace(K key, V value),将键为key的Entry对象值更新为value,并将原来的value最为该方法的返回值。

ConcurrentHashMap类属性和方法源码分析
  ConcurrentHashMap在JDK1.8中改动还是挺大的。它摒弃了Segment(段锁)的概念,在实现上采用了CAS算法。底层使用数组+链表+红黑树的方式,但是为了做到并发,同时也增加了大量的辅助类。如下是ConcurrentHashMap的类图。

属性

//ConcurrentHashMap最大容量
private static final int MAXIMUM_CAPACITY = 1 << 30;

//ConcurrentHashMap初始默认容量
private static final int DEFAULT_CAPACITY = 16;

//最大table数组的大小
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

//默认并行级别,主体代码并未使用
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

//加载因子,默认为0.75
private static final float LOAD_FACTOR = 0.75f;

//当hash桶中hash冲突的数目大于此值时,将链表转化为红黑树,加快hash的查找速度
static final int TREEIFY_THRESHOLD = 8;

//当hash桶中hash冲突小于等于此值时,会把红黑树转化为链表
static final int UNTREEIFY_THRESHOLD = 6;

//当table数组的长度大于该值时,同时满足hash桶中hash冲突大于TREEIFY_THRESHOLD时,才会把链表转化为红黑树
static final int MIN_TREEIFY_CAPACITY = 64;

//扩容操作中,transfer()方法允许多线程,该值表示一个线程执行transfer时,至少对连续的多少个hash桶进行transfer
private static final int MIN_TRANSFER_STRIDE = 16;

//ForwardingNode的hash值,ForwardingNode是一种临时节点,在扩容中才会出现,不存储实际的数据
static final int MOVED = -1;

//TreeBin的hash值,TreeBin是用于代理TreeNode的特殊节点,存储红黑树的根节点
static final int TREEBIN = -2;

//用于和负数hash进行&运算,将其转化为正数
static final int HASH_BITS = 0x7fffffff;

 基本类

Node<K,V>:基本结点/普通节点。当table中的Entry以链表形式存储时才使用,存储实际数据。此类不会在ConcurrentHashMap以外被修改,而且该类的key和value永远不为null(其子类可为null,随后会介绍)。

static class Node<K,V> implements Map.Entry<K,V> {

    final int hash;
    final K key;
    volatile V val;
    volatile Node<K,V> next;

    Node(int hash, K key, V val, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.val = val;
        this.next = next;
    }

    public final K getKey()       { return key; }
    public final V getValue()     { return val; }
    public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
    public final String toString(){ return key + "=" + val; }
    //不支持直接设置value的值
    public final V setValue(V value) {
        throw new UnsupportedOperationException();
    }

    public final boolean equals(Object o) {
        Object k, v, u; Map.Entry<?,?> e;
        return ((o instanceof Map.Entry) &&
                (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
                (v = e.getValue()) != null &&
                (k == key || k.equals(key)) &&
                (v == (u = val) || v.equals(u)));
    }

   //从当前节点查找对应的键为k的Node<K,V>
    Node<K,V> find(int h, Object k) {
        Node<K,V> e = this;
        if (k != null) {
            do {
                K ek;
                if (e.hash == h &&
                    ((ek = e.key) == k || (ek != null && k.equals(ek))))
                    return e;
            } while ((e = e.next) != null);
        }
        return null;
    }
}

Node<K,V>

TreeNode:红黑树结点。当table中的Entry以红黑树的形式存储时才会使用,存储实际数据。ConcurrentHashMap中对TreeNode结点的操作都会由TreeBin代理执行。当满足条件时hash会由链表变为红黑树,但是TreeNode中通过属性prev依然保留链表的指针。

static final class TreeNode<K,V> extends Node<K,V> {

    TreeNode<K,V> parent;  // red-black tree links
    TreeNode<K,V> left;
    TreeNode<K,V> right;
    //当前节点的前一个结点,从而方便删除
    TreeNode<K,V> prev;    // needed to unlink next upon deletion
    boolean red;

    TreeNode(int hash, K key, V val, Node<K,V> next,
             TreeNode<K,V> parent) {
        super(hash, key, val, next);
        this.parent = parent;
    }

    Node<K,V> find(int h, Object k) {
        return findTreeNode(h, k, null);
    }

    //查找hashcode为h,key为k的TreeNode结点
    final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
        if (k != null) {
            TreeNode<K,V> p = this;
            do  {
                int ph, dir; K pk; TreeNode<K,V> q;
                TreeNode<K,V> pl = p.left, pr = p.right;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.findTreeNode(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
        }
        return null;
    }
}

TreeNode<K,V>

ForwardingNode:转发结点。该节点是一种临时结点,只有在扩容进行中才会出现,其为Node的子类,该节点的hash值固定为-1,并且他不存储实际数据。如果旧table的一个hash桶中全部结点都迁移到新的数组中,旧table就在桶中放置一个ForwardingNode。当读操作或者迭代操作遇到ForwardingNode时,将操作转发到扩容后新的table数组中去执行,当写操作遇见ForwardingNode时,则尝试帮助扩容。

static final class ForwardingNode<K,V> extends Node<K,V> {

    final Node<K,V>[] nextTable;
    //构造函数指定hash值为MOVED,key=null, value=null, next=null
    ForwardingNode(Node<K,V>[] tab) {
        super(MOVED, null, null, null);
        this.nextTable = tab;
    }

    Node<K,V> find(int h, Object k) {
        //for循环避免多次遇见ForwardingNode导致递归过深
        outer: for (Node<K,V>[] tab = nextTable;;) {
            Node<K,V> e; int n;
            if (k == null || tab == null || (n = tab.length) == 0 ||
                (e = tabAt(tab, (n - 1) & h)) == null)
                return null;
            for (;;) {
                int eh; K ek;
                if ((eh = e.hash) == h &&
                    ((ek = e.key) == k || (ek != null && k.equals(ek))))
                    return e;
                if (eh < 0) {
                    //如果遇见ForwardingNode结点,则遍历ForwardingNode的nextTable结点
                    if (e instanceof ForwardingNode) {
                        tab = ((ForwardingNode<K,V>)e).nextTable;
                        continue outer;
                    }
                    else
                        return e.find(h, k);
                }
                if ((e = e.next) == null)
                    return null;
            }
        }
    }
}

ForwardingNode<K,V>
补充图一张说明扩容下是如何遍历结点的。

TreeBin:代理操作TreeNode结点。该节点的hash值固定为-2,存储实际数据的红黑树的根节点。因为红黑树进行写入操作整个树的结构可能发生很大变化,会影响到读线程。因此TreeBin需要维护一个简单的读写锁,不用考虑写-写竞争的情况。当然并不是全部的写操作都需要加写锁,只有部分put/remove需要加写锁。

static final class TreeBin<K,V> extends Node<K,V> {

    TreeNode<K,V> root;     //红黑树的根节点
    volatile TreeNode<K,V> first;    //链表的头结点
    volatile Thread waiter;    //最近一个设置waiter标志位的线程
    volatile int lockState;    //全局的锁状态
    // values for lockState
    static final int WRITER = 1; // set while holding write lock   写锁状态
    static final int WAITER = 2; // set when waiting for write lock  等待获取写锁的状态
    static final int READER = 4; // increment value for setting read lock  读锁状态,读锁可以叠加,即红黑树可以并发读,每增加一个读线程lockState的值加READER

    /**
     * 红黑树的读锁状态和写锁状态是互斥的,但是读写操作实际上可以是不互斥的
     * 红黑树的读写状态互斥是指以红黑树的方式进行读写操作时互斥的
     * 当线程持有红黑树的写锁时,读线程不能以红黑树的方式进行读取操作,但可以用简单链表的方式读取,从而实现了读写操作的并发执行
     * 当有线程持有红黑树的读锁时,写线程会阻塞,但是红黑树查找速度快,因此写线程阻塞时间短。
     * put/remove/replace方法会锁住TreeBin节点,因此不会出现写-写竞争。
     */
    //当hashCode相等且不是Comparable类时使用此方法判断大小
    static int tieBreakOrder(Object a, Object b) {
        int d;
        if (a == null || b == null ||
            (d = a.getClass().getName().
             compareTo(b.getClass().getName())) == 0)
            d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                 -1 : 1);
        return d;
    }

   //以b为头节点的链表创建红黑树
    TreeBin(TreeNode<K,V> b) {
        super(TREEBIN, null, null, null);
        this.first = b;
        TreeNode<K,V> r = null;
        for (TreeNode<K,V> x = b, next; x != null; x = next) {
            next = (TreeNode<K,V>)x.next;
            x.left = x.right = null;
            if (r == null) {
                x.parent = null;
                x.red = false;
                r = x;
            }
            else {
                K k = x.key;
                int h = x.hash;
                Class<?> kc = null;
                for (TreeNode<K,V> p = r;;) {
                    int dir, ph;
                    K pk = p.key;
                    if ((ph = p.hash) > h)
                        dir = -1;
                    else if (ph < h)
                        dir = 1;
                    else if ((kc == null &&
                              (kc = comparableClassFor(k)) == null) ||
                             (dir = compareComparables(kc, k, pk)) == 0)
                        dir = tieBreakOrder(k, pk);
                        TreeNode<K,V> xp = p;
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        x.parent = xp;
                        if (dir <= 0)
                            xp.left = x;
                        else
                            xp.right = x;
                        r = balanceInsertion(r, x);
                        break;
                    }
                }
            }
        }
        this.root = r;
        assert checkInvariants(root);
    }

    /**
     * 红黑树重构时西药对根节点加写锁
     */
    private final void lockRoot() {
        //尝试获取一次锁
        if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
            contendedLock(); //直到获取到写锁,该方法才返回
    }

    /**
     * 释放写锁
     */
    private final void unlockRoot() {
        lockState = 0;
    }

    /**
     * 阻塞写线程,当写线程获取写锁时返回
     *因为ConcurrentHashMap的put/remove/replace方法会对TreeBin加锁,因此不会出现写-写竞争
     *因此该方法只用考虑读锁线程阻碍线程获取写锁,而不用考虑写锁线程阻碍线程获取写锁,不用考虑写-写竞争
     */
    private final void contendedLock() {
        boolean waiting = false;
        for (int s;;) {
            //~WAITER表示反转WAITER,当没哟线程持有读锁时,该条件为true
            if (((s = lockState) & ~WAITER) == 0) {
                if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
                    //没有任何线程持有读写锁时,尝试让当前线程获取写锁,同时清空waiter标识位
                    if (waiting)
                        waiter = null;
                    return;
                }
            }
            else if ((s & WAITER) == 0) {   //当前线程持有读锁,并且当前线程不是WAITER状态时,该条件为true
                if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {   //尝试占据WAITER标识位
                    waiting = true;    //表明自己处于waiter状态
                    waiter = Thread.currentThread();
                }
            }
            else if (waiting)  //当前线程持有读锁,并且当前线程处于waiter状态时,该条件为true
                LockSupport.park(this);  //阻塞自己
        }
    }

    /**
     * 从根节点开始查找,找不到返回null
     * 当有写线程加上写锁时,使用链表方式进行查找
     */
    final Node<K,V> find(int h, Object k) {
        if (k != null) {
            for (Node<K,V> e = first; e != null; ) {
                int s; K ek;
                //两种特殊情况下以链表的方式进行查找
                //1、有线程正持有 写锁,这样做能够不阻塞读线程
                //2、WAITER时,不再继续加 读锁,能够让已经被阻塞的写线程尽快恢复运行,或者刚好让某个写线程不被阻塞
                if (((s = lockState) & (WAITER|WRITER)) != 0) {
                    if (e.hash == h &&
                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
                        return e;
                    e = e.next;
                }
                // 读线程数量加1,读状态进行累加
                else if (U.compareAndSwapInt(this, LOCKSTATE, s,
                                             s + READER)) {  
                    TreeNode<K,V> r, p;
                    try {
                        p = ((r = root) == null ? null :
                             r.findTreeNode(h, k, null));
                    } finally {
                        Thread w;
                        // 如果这是最后一个读线程,并且有写线程因为 读锁 而阻塞,那么要通知它,告诉它可以尝试获取写锁了
                        if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
                            (READER|WAITER) && (w = waiter) != null)
                            LockSupport.unpark(w);  // 让被阻塞的写线程运行起来,重新去尝试获取写锁
                    }
                    return p;
                }
            }
        }
        return null;
    }

    /**
     *在ConcurrentHashMap的putVal方法如果hash桶为红黑树时调用
     */
    final TreeNode<K,V> putTreeVal(int h, K k, V v) {
        Class<?> kc = null;
        boolean searched = false;
        for (TreeNode<K,V> p = root;;) {
            int dir, ph; K pk;
            if (p == null) {
                first = root = new TreeNode<K,V>(h, k, v, null, null);
                break;
            }
            else if ((ph = p.hash) > h)
                dir = -1;
            else if (ph < h)
                dir = 1;
            else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                return p;
            else if ((kc == null &&
                      (kc = comparableClassFor(k)) == null) ||
                     (dir = compareComparables(kc, k, pk)) == 0) {
                if (!searched) {
                    TreeNode<K,V> q, ch;
                    searched = true;
                    if (((ch = p.left) != null &&
                         (q = ch.findTreeNode(h, k, kc)) != null) ||
                        ((ch = p.right) != null &&
                         (q = ch.findTreeNode(h, k, kc)) != null))
                        return q;
                }
                dir = tieBreakOrder(k, pk);
            }

            TreeNode<K,V> xp = p;
            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                TreeNode<K,V> x, f = first;
                first = x = new TreeNode<K,V>(h, k, v, f, xp);
                if (f != null)
                    f.prev = x;
                if (dir <= 0)
                    xp.left = x;
                else
                    xp.right = x;
                if (!xp.red)
                    x.red = true;
                else {
                    lockRoot();
                    try {
                        root = balanceInsertion(root, x);
                    } finally {
                        unlockRoot();
                    }
                }
                break;
            }
        }
        assert checkInvariants(root);
        return null;
    }

    /**
     * 从链表和红黑树上都删除结点
     * 两点区别:1、返回值,红黑树的规模太小时,返回true,调用者再去进行树->链表的转化;
     * 2、红黑树规模足够,不用变换成链表时,进行红黑树上的删除要加 写锁
     */
    final boolean removeTreeNode(TreeNode<K,V> p) {
        TreeNode<K,V> next = (TreeNode<K,V>)p.next;
        TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
        TreeNode<K,V> r, rl;
        if (pred == null)
            first = next;
        else
            pred.next = next;
        if (next != null)
            next.prev = pred;
        if (first == null) {
            root = null;
            return true;
        }
        if ((r = root) == null || r.right == null || // too small
            (rl = r.left) == null || rl.left == null)
            return true;
        lockRoot();
        try {
            TreeNode<K,V> replacement;
            TreeNode<K,V> pl = p.left;
            TreeNode<K,V> pr = p.right;
            if (pl != null && pr != null) {
                TreeNode<K,V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                TreeNode<K,V> sr = s.right;
                TreeNode<K,V> pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                }
                else {
                    TreeNode<K,V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    r = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            }
            else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
            if (replacement != p) {
                TreeNode<K,V> pp = replacement.parent = p.parent;
                if (pp == null)
                    r = replacement;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

            root = (p.red) ? r : balanceDeletion(r, replacement);

            if (p == replacement) {  // detach pointers
                TreeNode<K,V> pp;
                if ((pp = p.parent) != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                    p.parent = null;
                }
            }
        } finally {
            unlockRoot();
        }
        assert checkInvariants(root);
        return false;
    }

    /* ------------------------------------------------------------ */
    // 如下是红黑树的经典算法

    static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                          TreeNode<K,V> p) {
        TreeNode<K,V> r, pp, rl;
        if (p != null && (r = p.right) != null) {
            if ((rl = p.right = r.left) != null)
                rl.parent = p;
            if ((pp = r.parent = p.parent) == null)
                (root = r).red = false;
            else if (pp.left == p)
                pp.left = r;
            else
                pp.right = r;
            r.left = p;
            p.parent = r;
        }
        return root;
    }

    static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                           TreeNode<K,V> p) {
        TreeNode<K,V> l, pp, lr;
        if (p != null && (l = p.left) != null) {
            if ((lr = p.left = l.right) != null)
                lr.parent = p;
            if ((pp = l.parent = p.parent) == null)
                (root = l).red = false;
            else if (pp.right == p)
                pp.right = l;
            else
                pp.left = l;
            l.right = p;
            p.parent = l;
        }
        return root;
    }

    static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                TreeNode<K,V> x) {
        x.red = true;
        for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
            if ((xp = x.parent) == null) {
                x.red = false;
                return x;
            }
            else if (!xp.red || (xpp = xp.parent) == null)
                return root;
            if (xp == (xppl = xpp.left)) {
                if ((xppr = xpp.right) != null && xppr.red) {
                    xppr.red = false;
                    xp.red = false;
                    xpp.red = true;
                    x = xpp;
                }
                else {
                    if (x == xp.right) {
                        root = rotateLeft(root, x = xp);
                        xpp = (xp = x.parent) == null ? null : xp.parent;
                    }
                    if (xp != null) {
                        xp.red = false;
                        if (xpp != null) {
                            xpp.red = true;
                            root = rotateRight(root, xpp);
                        }
                    }
                }
            }
            else {
                if (xppl != null && xppl.red) {
                    xppl.red = false;
                    xp.red = false;
                    xpp.red = true;
                    x = xpp;
                }
                else {
                    if (x == xp.left) {
                        root = rotateRight(root, x = xp);
                        xpp = (xp = x.parent) == null ? null : xp.parent;
                    }
                    if (xp != null) {
                        xp.red = false;
                        if (xpp != null) {
                            xpp.red = true;
                            root = rotateLeft(root, xpp);
                        }
                    }
                }
            }
        }
    }

    static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
                                               TreeNode<K,V> x) {
        for (TreeNode<K,V> xp, xpl, xpr;;)  {
            if (x == null || x == root)
                return root;
            else if ((xp = x.parent) == null) {
                x.red = false;
                return x;
            }
            else if (x.red) {
                x.red = false;
                return root;
            }
            else if ((xpl = xp.left) == x) {
                if ((xpr = xp.right) != null && xpr.red) {
                    xpr.red = false;
                    xp.red = true;
                    root = rotateLeft(root, xp);
                    xpr = (xp = x.parent) == null ? null : xp.right;
                }
                if (xpr == null)
                    x = xp;
                else {
                    TreeNode<K,V> sl = xpr.left, sr = xpr.right;
                    if ((sr == null || !sr.red) &&
                        (sl == null || !sl.red)) {
                        xpr.red = true;
                        x = xp;
                    }
                    else {
                        if (sr == null || !sr.red) {
                            if (sl != null)
                                sl.red = false;
                            xpr.red = true;
                            root = rotateRight(root, xpr);
                            xpr = (xp = x.parent) == null ?
                                null : xp.right;
                        }
                        if (xpr != null) {
                            xpr.red = (xp == null) ? false : xp.red;
                            if ((sr = xpr.right) != null)
                                sr.red = false;
                        }
                        if (xp != null) {
                            xp.red = false;
                            root = rotateLeft(root, xp);
                        }
                        x = root;
                    }
                }
            }
            else { // symmetric
                if (xpl != null && xpl.red) {
                    xpl.red = false;
                    xp.red = true;
                    root = rotateRight(root, xp);
                    xpl = (xp = x.parent) == null ? null : xp.left;
                }
                if (xpl == null)
                    x = xp;
                else {
                    TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                    if ((sl == null || !sl.red) &&
                        (sr == null || !sr.red)) {
                        xpl.red = true;
                        x = xp;
                    }
                    else {
                        if (sl == null || !sl.red) {
                            if (sr != null)
                                sr.red = false;
                            xpl.red = true;
                            root = rotateLeft(root, xpl);
                            xpl = (xp = x.parent) == null ?
                                null : xp.left;
                        }
                        if (xpl != null) {
                            xpl.red = (xp == null) ? false : xp.red;
                            if ((sl = xpl.left) != null)
                                sl.red = false;
                        }
                        if (xp != null) {
                            xp.red = false;
                            root = rotateRight(root, xp);
                        }
                        x = root;
                    }
                }
            }
        }
    }

    /**
     * 递归检查,确保构造的是正确无误的红黑树
     */
    static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
        TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
            tb = t.prev, tn = (TreeNode<K,V>)t.next;
        if (tb != null && tb.next != t)
            return false;
        if (tn != null && tn.prev != t)
            return false;
        if (tp != null && t != tp.left && t != tp.right)
            return false;
        if (tl != null && (tl.parent != t || tl.hash > t.hash))
            return false;
        if (tr != null && (tr.parent != t || tr.hash < t.hash))
            return false;
        if (t.red && tl != null && tl.red && tr != null && tr.red)
            return false;
        if (tl != null && !checkInvariants(tl))
            return false;
        if (tr != null && !checkInvariants(tr))
            return false;
        return true;
    }
    // Unsafe相关的初始化工作
    private static final sun.misc.Unsafe U;
    private static final long LOCKSTATE;
    static {
        try {
            U = sun.misc.Unsafe.getUnsafe();
            Class<?> k = TreeBin.class;
            LOCKSTATE = U.objectFieldOffset
                (k.getDeclaredField("lockState"));
        } catch (Exception e) {
            throw new Error(e);
        }
    }
}

TreeBin<K,V>

ReservationNode:保留结点,也被称为空节点。该节点的hash值固定为-3,不保存实际数据。正常的写操作都需要对hash桶的第一个节点进行加锁,如果hash桶的第一个节点为null时是无法加锁的,因此需要new一个ReservationNode节点,作为hash桶的第一个节点,对该节点进行加锁。

static final class ReservationNode<K,V> extends Node<K,V> {

    ReservationNode() {
        super(RESERVED, null, null, null);
    }

    Node<K,V> find(int h, Object k) {
        return null;
    }
}

ReservationNode<K,V>

ConcurrentHashMap方法

  首先介绍一些基本的方法,这些方法不会直接用到,但却是理解ConcurrentHashMap常见方法前提,因为这些方法被ConcurrentHashMap常见的方法调用。然后在介绍完这些基本方法的基础上,再分析常见的containsValue、put、remove等常见方法。

Node<K,V>[] initTable():初始化table的方法。初始化这个工作不是在构造函数中执行的,而是在put方法中执行,put方法中发现table为null时,调用该方法。

private final Node<K,V>[] initTable() {

    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        if ((sc = sizeCtl) < 0)
            //真正的初始化是要禁止并发的,保证tables数组只被初始化一次,但又不能切换线程,所以需要yield()让出CPU
            Thread.yield(); // lost initialization race; just spin
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { //更新sizeCtl标识为初始化状态
            try {
                //如果当前表为空,初始化table表
                if ((tab = table) == null || tab.length == 0) {
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    sc = n - (n >>> 2);  //设置阈值为总长度的0.75,从而可看出loadFactor没有用到
                }
            } finally {
                sizeCtl = sc;   //设置阈值
            }
            break;
        }
    }
    return tab;
}

initTable方法

如下几个方法是用于读取table数组,使用Unsafe提供更强的功能代替普通的读写。

//volatile读取table[i]
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {

    return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}

//CAS更新table[i],更新Node链表的头节点,或者TreeBin节点
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,

                                    Node<K,V> c, Node<K,V> v) {
    return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}

//volatile写入table[i]
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {

    U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
}

//尝试将链表转化为红黑树
private final void treeifyBin(Node<K,V>[] tab, int index) {

Node<K,V> b; int n, sc;
if (tab != null) {
    //当table的length小于64时,只进行一次扩容
    if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
        tryPresize(n << 1);
    //将链表转化为红黑树
    else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
        synchronized (b) {
            if (tabAt(tab, index) == b) {
                TreeNode<K,V> hd = null, tl = null;
                for (Node<K,V> e = b; e != null; e = e.next) {
                    TreeNode<K,V> p =
                        new TreeNode<K,V>(e.hash, e.key, e.val,
                                              null, null);
                    if ((p.prev = tl) == null)
                        hd = p;
                    else
                        tl.next = p;
                    tl = p;
                }
                setTabAt(tab, index, new TreeBin<K,V>(hd));
            }
        }
    }
}

}
//将红黑树转化为链表,在调用此方法时synchronized加锁,这里不再需要加锁
static <K,V> Node<K,V> untreeify(Node<K,V> b) {

    Node<K,V> hd = null, tl = null;
    for (Node<K,V> q = b; q != null; q = q.next) {
        Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
        if (tl == null)
            hd = p;
        else
            tl.next = p;
        tl = p;
    }
    return hd;

}

View Code

扩容方法:扩容分为两个步骤:第一步新建一个2倍大小的数组(单线程完成),第二步是rehash,把旧数组中的数据重新计算hash值放入新数组中。ConcurrentHashMap在第二步中处理旧table[index]中的节点时,这些节点要么在新table[index]处,要么在新table[index]和table[index+n]处,因此旧table各hash桶中的节点迁移不相互影响。ConcurrentHashMap扩容可以在多线程下完成,因此就需要计算每个线程需要负责处理多少个hash桶。

int n = tab.length, stride;

    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // 最小值为16

计算每个transfer处理桶的个数
计算完成之后每个transfer按照计算的值处理相应下标位置的桶,扩容操作从旧数组的末尾向前一次对hash桶进行处理。从末尾向前处理主要是减少和遍历数据时的锁冲突。从旧数组的末尾向前代码如下:

//标记一个transfer任务是否完成,完成为true,否则为false
boolean advance = true;
//标记整个扩容任务是否完成
boolean finishing = false; // to ensure sweep before committing nextTab
//仅截取部分代码片段,其中i表示当前transfer处理的hash桶的index,而bound表示当前transfer需要处理的hash桶的index的下界
while (advance) {

int nextIndex, nextBound;
if (--i >= bound || finishing)  //表明一次transfer未执行完毕
    advance = false;
else if ((nextIndex = transferIndex) <= 0) {  //transfer任务完成,可以准备退出扩容
    i = -1;
    advance = false;
}
//尝试申请transfer任务
else if (U.compareAndSwapInt
         (this, TRANSFERINDEX, nextIndex,
          nextBound = (nextIndex > stride ?
                       nextIndex - stride : 0))) {
    bound = nextBound;   //transfer任务中hash桶的下界
    i = nextIndex - 1;    //transfer当前处理的hash桶的index
    advance = false;
}

}

计算每个transfer处理hash桶的区域

扩容部分的完整代码如下:

//x表示扩容需要增加的值
//check表示计数操作是否会触发扩容,check<0表示不会触发
//check<=1说明线程更新计数时没有遇到竞争
private final void addCount(long x, int check) {

    CounterCell[] as; long b, s;
    if ((as = counterCells) != null ||
        !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
        CounterCell a; long v; int m;
        boolean uncontended = true;
        if (as == null || (m = as.length - 1) < 0 ||
            (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
            !(uncontended =
              U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
            fullAddCount(x, uncontended);
            return;
        }
        if (check <= 1)
            return;
        s = sumCount();
    }
    if (check >= 0) {   //检测是否扩容
        Node<K,V>[] tab, nt; int n, sc;
        //扩容基本条件
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
               (n = tab.length) < MAXIMUM_CAPACITY) {
            int rs = resizeStamp(n);   //计算本次扩容生成戳
            if (sc < 0) {  //表明此时没有其他线程扩容
                //5个条件只要有一个为true,则当前线程不能帮助扩容
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                //前5个条件都为false时尝试此次扩容,将正在执行transfer任务的线程数+1
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            //尝试让当前线程成为第一个执行transfer任务的线程
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);   //执行扩容
            s = sumCount();  //重新计数看是否需要下一次扩容
        }
    }
}

/**
 * Helps transfer if a resize is in progress.
 * 如果正在进行扩容,则尝试帮助执行transfer任务
 */
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
    Node<K,V>[] nextTab; int sc;
    //判断是否仍然在执行扩容
    if (tab != null && (f instanceof ForwardingNode) &&
        (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
        int rs = resizeStamp(tab.length);  //计算扩容生成戳
        //再次判断是否正在执行扩容
        while (nextTab == nextTable && table == tab &&
               (sc = sizeCtl) < 0) {
            // 判断下是否能真正帮助此次扩容
            if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                sc == rs + MAX_RESIZERS || transferIndex <= 0)
                break;   //不能帮助则终止
            if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                transfer(tab, nextTab);   //否则执行此次扩容
                break;
            }
        }
        return nextTab;   //返回扩容后的数组
    }
    return table;   //如果是返回table说明扩容已经结束,table被其它线程赋值新数组
}

//预先扩容,包含初始化逻辑的扩容
//用于putAll,此时是需要考虑初始化;链表转化为红黑树中,不满足table容量条件时,进行一次扩容,此时就是普通的扩容
private final void tryPresize(int size) {
    int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
        tableSizeFor(size + (size >>> 1) + 1);
    int sc;
    while ((sc = sizeCtl) >= 0) {
        Node<K,V>[] tab = table; int n;
        if (tab == null || (n = tab.length) == 0) {  //用于处理初始化,跟initTable方法相同
            n = (sc > c) ? sc : c;
            if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if (table == tab) {
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = nt;
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc;
                }
            }
        }
        // c <= sc,说明已经被扩容过了;n >= MAXIMUM_CAPACITY说明table数组已经到了最大长度
        else if (c <= sc || n >= MAXIMUM_CAPACITY)
            break;
        else if (tab == table) {   //可以进行扩容
            int rs = resizeStamp(n);
            if (sc < 0) {
                Node<K,V>[] nt;
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
        }
    }
}

// 执行节点迁移,准确地说是迁移内容,因为很多节点都需要进行复制,复制能够保证读操作尽量不受影响
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; //计算每个transfer负责处理多少个hash桶
    if (nextTab == null) {            //初始化Node数组
        try {
            @SuppressWarnings("unchecked")
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;
        transferIndex = n;
    }
    int nextn = nextTab.length;
    // 转发节点,在旧数组的一个hash桶中所有节点都被迁移完后,放置在这个hash桶中,表明已经迁移完,对它的读操作会转发到新数组
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    boolean advance = true;
    boolean finishing = false; //标识扩容工作是否完成
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
        while (advance) {
            int nextIndex, nextBound;
            if (--i >= bound || finishing)  // 一次transfer还未执行完毕
                advance = false;
            else if ((nextIndex = transferIndex) <= 0) {  // transfer任务已经没有了,表明可以准备退出扩容了
                i = -1;
                advance = false;
            }
            //尝试申请transfer任务
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                // transfer申请到任务后标记自己的任务区间
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        //处理扩容重叠
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            if (finishing) {   //扩容完成
                nextTable = null;
                table = nextTab;
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            // 尝试把正在执行扩容的线程数减1,表明自己要退出扩容
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                // 判断下自己是不是本轮扩容中的最后一个线程,如果不是,则直接退出。
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) 
                    return;
                finishing = advance = true;
                //最后一个扩容的线程要重新检查一次旧数组的所有hash桶,看是否是都被正确迁移到新数组了。  
                // 正常情况下,重新检查时,旧数组所有hash桶都应该是转发节点,此时这个重新检查的工作很快就会执行完。  
                // 特殊情况,比如扩容重叠,那么会有线程申请到了transfer任务,但是参数错误(旧数组和新数组对不上,不是2倍长度的关系),  
               // 此时这个线程领取的任务会作废,那么最后检查时,还要处理因为作废二没有被迁移的hash桶,把它们正确迁移到新数组中
                i = n; // recheck before commit
            }
        }
        else if ((f = tabAt(tab, i)) == null)  // hash桶本身为null,不用迁移,直接尝试安放一个转发节点
            advance = casTabAt(tab, i, null, fwd);
        else if ((fh = f.hash) == MOVED)  //当前hash桶有线程在对其扩容
            advance = true; // already processed
        else {
            synchronized (f) {  //给f加锁
                // 判断下加锁的节点仍然是hash桶中的第一个节点,加锁的是第一个节点才算加锁成功
                if (tabAt(tab, i) == f) {
                    Node<K,V> ln, hn;
                    if (fh >= 0) {
                        int runBit = fh & n; //记录当前hash值的第X(Math.pow(2,X)=n)位的值
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
                            int b = p.hash & n;
                            if (b != runBit) {
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            hn = lastRun;
                            ln = null;
                        }
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        setTabAt(nextTab, i, ln); // 放在新table的hash桶中
                        setTabAt(nextTab, i + n, hn); // 放在新table的hash桶中
                        setTabAt(tab, i, fwd);  // 把旧table的hash桶中放置转发节点,表明此hash桶已经被处理
                        advance = true;
                    }
                    // 红黑树的情况,先使用链表的方式遍历,复制所有节点,根据高低位  
                    //组装成两个链表lo和hi,然后看下是否需要进行红黑树变换,最后放在新数组对应的hash桶中 
                    else if (f instanceof TreeBin) {
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        for (Node<K,V> e = t.first; e != null; e = e.next) {
                            int h = e.hash;
                            TreeNode<K,V> p = new TreeNode<K,V>
                                (h, e.key, e.val, null, null);
                            //当前节点的hash值第X位为0
                            if ((h & n) == 0) {
                                if ((p.prev = loTail) == null)
                                    lo = p;
                                else
                                    loTail.next = p;
                                loTail = p;
                                ++lc;
                            }
                            //当前节点的hash值第X位为1
                            else {
                                if ((p.prev = hiTail) == null)
                                    hi = p;
                                else
                                    hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        //如果lo的size(lc)小于6,则将lo转化为链表
                        //如果lo的size大于6且hi的size(hc)不等于0,重新构造红黑树,如果hi的size为0,则ln为原始红黑树
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        //hn的设置桶ln相同
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin<K,V>(hi) : t;
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                }
            }
        }
    }
}

扩容代码
如下是一个链表扩容的示意图,第一张是一个hash桶中的一条链表,其中蓝色节点表示第X位为0,而红色表示第X位为1,扩容后旧table[i]的桶中为一个ForwardingNode节点,而新nextTab[i]和nextTable[i+n]的桶中分别为第二张和第三张图。

Traverser只读遍历器:确切的说它不是方法,而是一个内部类。ConcurrentHashMap的多线程扩容增加了对ConcurrentHashMap遍历的困难。当遍历旧table时,如果遇到某个hash桶中为ForwardingNode节点,则遍历顺序参考基本类中ForwardingNode中的介绍。

static class Traverser<K,V> {

    Node<K,V>[] tab;        // current table; updated if resized 扩容完成后的旧数组
    Node<K,V> next;         // the next entry to use  扩容完成后的新数组
    TableStack<K,V> stack, spare; //存储遍历到的 ForwardingNodes
    int index;              // index of bin to use next  下一个要读取的hash桶的下标
    int baseIndex;          // current index of initial table  起始下标
    int baseLimit;          // index bound for initial table   终止下标
    final int baseSize;     // initial table size  tab数组长度

    Traverser(Node<K,V>[] tab, int size, int index, int limit) {
        this.tab = tab;
        this.baseSize = size;
        this.baseIndex = this.index = index;
        this.baseLimit = limit;
        this.next = null;
    }

    /**
     * Advances if possible, returning next valid node, or null if none.
     * 遍历器指针移动到下一个有实际数据的节点,并返回该节点,如果结束则返回null
     */
    final Node<K,V> advance() {
        Node<K,V> e;
        if ((e = next) != null)
            e = e.next;
        for (;;) {
            Node<K,V>[] t; int i, n;  // must use locals in checks
            if (e != null)
                return next = e;  //节点非空则直接返回该节点
            //达到边界条件直接返回null
            if (baseIndex >= baseLimit || (t = tab) == null ||
                (n = t.length) <= (i = index) || i < 0)
                return next = null;
            //处理特殊节点(ForwardingNode、TreeBin、ReservationNode)
            if ((e = tabAt(t, i)) != null && e.hash < 0) {
                if (e instanceof ForwardingNode) {
                    //遍历ForwardingNode的nextTable
                    tab = ((ForwardingNode<K,V>)e).nextTable;
                    e = null;
                    pushState(t, i, n);  //将当前位置入栈
                    continue;
                }
                else if (e instanceof TreeBin)
                    e = ((TreeBin<K,V>)e).first;
                else
                    e = null;
            }
            if (stack != null)
                recoverState(n);  //栈不为空,出栈
            else if ((index = i + baseSize) >= n)  //栈为空,遍历下一个hash桶
                index = ++baseIndex; // visit upper slots if present
        }
    }

    /**
     * Saves traversal state upon encountering a forwarding node.
     * 入栈操作,保存当前对tab的遍历信息
     */
    private void pushState(Node<K,V>[] t, int i, int n) {
        TableStack<K,V> s = spare;  // reuse if possible
        if (s != null)
            spare = s.next;
        else
            s = new TableStack<K,V>();
        s.tab = t;
        s.length = n;
        s.index = i;
        s.next = stack;
        stack = s;
    }

    /**
     * Possibly pops traversal state.
     * 参数n为当前tab数组的长度
     * 可能会出栈,不出栈时,更改索引,准备遍历的是FN.nextTable中对应的第二个hash桶
     */
    private void recoverState(int n) {
        TableStack<K,V> s; int len;
        while ((s = stack) != null && (index += (len = s.length)) >= n) {
            n = len;
            index = s.index;
            tab = s.tab;
            s.tab = null;
            TableStack<K,V> next = s.next;
            s.next = spare; // save for reuse
            stack = next;
            spare = s;
        }
        if (s == null && (index += baseSize) >= n)
            index = ++baseIndex;
    }
}

Traverser

containsValue(Object value):遍历ConcurrentHashMap看是否存在值为value的Node。

public boolean containsValue(Object value) {

    if (value == null)
        throw new NullPointerException();
    Node<K,V>[] t;
    if ((t = table) != null) {
        Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
        for (Node<K,V> p; (p = it.advance()) != null; ) {
            V v;
            if ((v = p.val) == value || (v != null && value.equals(v)))
                return true;
        }
    }
    return false;
}

containsValue(Object value)

containsKey(Object key):遍历ConcurrentHashMap看是否存在键为key的Node。

public boolean containsKey(Object key) {

return get(key) != null;

}
public V get(Object key) {

Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
    (e = tabAt(tab, (n - 1) & h)) != null) {
    if ((eh = e.hash) == h) {
        if ((ek = e.key) == key || (ek != null && key.equals(ek)))
            return e.val;
    }
    else if (eh < 0) //当hash值小于0时,说明当前节点为特殊节点,则以当前节点为根节点进行遍历,而不是遍历该节点的next节点
        return (p = e.find(h, key)) != null ? p.val : null;
    while ((e = e.next) != null) {
        if (e.hash == h &&
            ((ek = e.key) == key || (ek != null && key.equals(ek))))
            return e.val;
    }
}
return null;

}

containsKey(Object key)

put(K key, V value):将该键值对插入ConcurrentHashMap中。

public V put(K key, V value) {

return putVal(key, value, false);

}

final V putVal(K key, V value, boolean onlyIfAbsent) {

if (key == null || value == null) throw new NullPointerException();  //键或值存在null时直接抛出空指针异常
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();   //初始化table
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);  //发现转发节点,帮助扩容
        else {
            V oldVal = null;
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) {  //当前hash值大于0说明hash桶中为链表
                        binCount = 1;
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;   //如果当前键值对存在,则更新value为最新的value值
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) {  //hash桶值为红黑树
                        Node<K,V> p;
                        binCount = 2;
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) {
                //如果当前hash桶中的size大于8,将该链表转化为红黑树
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    addCount(1L, binCount);  //计数值加1
    return null;
}

put(K key, V value)

remove(Object key):删除键为key的Node。同样其中也包含了对replace(Object key, V value, Object cv)的介绍。

public V remove(Object key) {

return replaceNode(key, null, null);

}
final V replaceNode(Object key, V value, Object cv) {

int hash = spread(key.hashCode());
for (Node<K,V>[] tab = table;;) {
    Node<K,V> f; int n, i, fh;
    if (tab == null || (n = tab.length) == 0 ||
        (f = tabAt(tab, i = (n - 1) & hash)) == null)
        break;  //当前要移除的key不在table中
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            boolean validated = false;
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) {   //hash桶中为链表
                        validated = true;
                        for (Node<K,V> e = f, pred = null;;) {
                            K ek;
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                V ev = e.val;
                                if (cv == null || cv == ev ||
                                    (ev != null && cv.equals(ev))) {
                                    oldVal = ev;
                                    if (value != null)  //如果当前value不为空,则更新value
                                        e.val = value;
                                    else if (pred != null)  //value为空,则删除该节点
                                        pred.next = e.next;
                                    else
                                        setTabAt(tab, i, e.next);  //删除的是hash的第一个Node
                                }
                                break;
                            }
                            pred = e;
                            if ((e = e.next) == null)
                                break;
                        }
                    }
                    else if (f instanceof TreeBin) {  //hash桶为红黑树
                        validated = true;
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> r, p;
                        if ((r = t.root) != null &&
                            (p = r.findTreeNode(hash, key, null)) != null) {
                            V pv = p.val;
                            if (cv == null || cv == pv ||
                                (pv != null && cv.equals(pv))) {
                                oldVal = pv;
                                if (value != null)
                                    p.val = value;
                                else if (t.removeTreeNode(p)) //处理退化为链表的情况
                                    setTabAt(tab, i, untreeify(t.first));
                            }
                        }
                    }
                }
            }
            //因为该方法可能是执行替换也可能是删除,如果是删除操作则计数值减1
            if (validated) {
                if (oldVal != null) {
                    if (value == null)
                        addCount(-1L, -1);
                    return oldVal;
                }
                break;
            }
        }
    }
    return null;
}

remove(Object key)

  至此ConcurrentHashMap的主要方法也就介绍完了,综合比较Hashtable和ConcurrentHashMap,两者都是线程安全的,但是Hashtable是表级锁,而ConcurrentHashMap是段级锁,锁住的单个Node,而且ConcurrentHashMap可以并发读取。对整张表进行迭代时,ConcurrentHashMap使用了不同于Hashtable的迭代方式,而是一种弱一致性的迭代器。

声明:DungCry.|版权所有,违者必究|如未注明,均为原创|本网站采用BY-NC-SA协议进行授权

转载:转载请注明原文链接 - Hashtable、ConcurrentHashMap源码分析


以此热爱,以此谋生。
Le vent se lève, il faut tenter de vivre